QP Code: 28603

(2 Hours)

[Total Marks :60

N.B.: (1) Question no. 1 is compulsory.

- (2) Attempt any three questions from Q.2. to Q. 6.
- (3) Use suitable data wherever required.
- (4) Figures to the right indicate full marks.

1.Attempt any five from the following:-

15

- (a) Draw (a) (112) (b) (0 4 0) (c) [0 4 0] with reference to a cubic unit cell.
- (b) What is the probability of an electron being thermally promoted to the conduction band in diamond at 27°C, if the bandgap is 5.6 eV wide?
- (c) Define drift current, diffusion current and mobility of charge carriers.
- (d) What is dielectric polarization and dielectric susceptibility? Write the relation between them.
- (e) State and explain Ohm's law in magnetic circuit.
- (f) Write Sabine's formula and explain the terms used in it.
- (g) Calculate the length of an iron rod which can be used to produce ultrasonic waves of 20kHz Given $Y = 11.6 \times 10^{10} \text{ N/m}^2$, $\rho = 7.23 \times 10^3 \text{kg/m}^3$
- (a) Explain formation of energy bands in solids and explain classification on the 8
 basis of energy band theory.
 - (b) Zn has hep structure. The nearest neighbour distance is 0.27nm. The atomic 7 weight of Zn is 65.37. Calculate the volume of unit cell, density and atomic packing fraction of Zn.
- (a) What is hysteresis? Draw a hysteresis loop for ferromagnetic material and explain 8
 various important parameters.

A magnetic material has a magnetization of 2300 A/m and produces a flux density of 0.00314 wb/m². Calculate magnetizing force and relative permeability of the material.

(b) Explain the statement "crystal act as three dimesional grating with X-rays".

Monochromatic X-ray beam of wavelength $\lambda = 5.8189 \text{ A}^0$ is reflected

strongly for a glancing angle of $\theta = 75.86^{\circ}$ in first order by certain planes of cubic of lattice constant $3A^{\circ}$. Determine Miller indices of the possible reflecting planes.

- 4. (a) Define Ligancy. Find the value of critical radius ratio for ligancy 4.
 - (b) An impurity of 0.01 ppm is added to Si. The semiconductor has a resistivity of 5 0.25Ωm at 300K. Calculate the hole concentration and its mobility. Atomic weight of Si is 28.1, density of Si = 2.4 × 10³ kg/m³
 - (c) Explain the origin of electronic, ionic and orientational polarization and temperature 5 dependence of respective polarizability. [TURN OVER]

5. (a)	The density of copper is 8980kg/m ³ and unit cell dimension is 3.61 A ^o . Atomic	
- (-)	and unit cell dimension is 3.61 A ^o Atomic	5
	weight of conner is 63 54 Data	-
	weight of copper is 63.54. Determine type of crystal structure. Calculate atomic	
	radius and interplaner specime of (1 1 0)	
	radius and interplanar spacing of (1 1 0) plane.	
/1 1		

- (b) What is Hall effect? Derive expression for Hall voltage with neat labelled diagram. 5
- (c) Explain how the reverberation time is affected by (i) size (ii) nature of wall 5 surface (iii) audience in an auditorium.
- 6. (a) Estimate the ratio of vacancies at (i) -119°C (ii) 80°C where average required 5 to create vacancy is 1.8eV.
 - (b) How a p-n junction diode is used to generate a potential difference in a photovoltaic 5 solar cell?
 - (c) Explain with neat labelled diagram the construction and working of a piezoelectric 5 oscillator.